Acta Cryst. (1999). C55, 1400-1401

$Ba_2GaH(P_2O_7)_2$

KUEI-FANG HSU AND SUE-LEIN WANG

Department of Chemistry, National Tsing Hua University, Hsinchu, Tawian 300. E-mail: kfhsu@chem.nthu.edu.tw

(Received 8 January 1999; accepted 3 June 1999)

Abstract

A new gallium phosphate, dibarium gallium hydrogen bis(diphosphate), Ba₂GaH(P₂O₇)₂, has been synthesized by high temperature–pressure hydrothermal reaction and structurally characterized by single-crystal X-ray diffraction. The structure consists of infinite chains of corner-sharing GaO₆ octahedra and H_{0.5}P₂O₇ groups linked by Ba²⁺ cations. The Ga atom lies on an inversion center.

Comment

Gallium phosphates have shown a rich crystal chemistry owing to the accessibility of more than one kind of coordination polyhedron and the ability of Ga–O polyhedra and phosphate tetrahedra to form a variety of complex open-network structures. Despite the large number of known microporous gallophosphates, the majority of characterized AGaPO's (where A may be alkali metal or protonated amine cations) are prepared via sol-gel methods or under mild hydrothermal conditions. We have recently prepared the first microporous barium–gallium phosphate, Ba₂GaH(P₂O₇)₂, under more rigorous conditions, *i.e.* a temperature of 823 K and a pressure of ~2200 atm (1 atm = 101 325 Pa).

The title compound crystallizes in the triclinic system and adopts a chain structure containing nine-coordinate Ba, six-coordinate Ga and four-coordinate P atoms (Fig. 1). The chains are topologically similar to that in Cs₂GaH₃(P₂O₇)₂ (Gruntze et al., 1988). All of the GaO₆ octahedra share the six vertices with four H_{0.5}P₂O₇ groups, in which the hydroxy H atom bridges two interchain diphosphate groups. This results in polyhedral sheets running parallel to the ac plane. Two types of windows exist within the sheet: an eight-sided window, surrounded by two GaO₆ octahedra, four H_{0.5}PO₄ tetrahedra and two PO4 tetrahedra, is formed between adjacent chains, and a four-sided window, surrounded by two GaO₆ octahedra and two PO₄ tetrahedra, is formed within the chains (Fig. 2). It is interesting to note that the infinite $\{GaH(P_2O_7)_2\}_n$ chains in the Ba compound have the same topology as the infinite $\{GaH_3(P_2O_7)_2\}_n$ chains in the Cs compound, except that the four-sided window contains $H_{0.5}PO_4$ instead of PO_4 tetrahedra in the latter compound. This also results in rather wide six-sided windows in the Cs compound.

Fig. 1. Perspective view of the Ba₂GaH(P₂O₇)₂ structure down the *a* axis; the *c* axis is horizontal. The octahedra and tetrahedra represent GaO₆ and PO₄ groups, respectively. The large and small circles are Ba and H atoms, respectively. The solid lines represent the O—H bonds belonging to the H_{0.5}PO₄ groups.

Fig. 2. A section of a polyhedral sheet in the Ba₂GaH(P₂O₇)₂ structure approximately parallel to the ac plane, with the c axis horizontal.

The H atom resides on an inversion center. The two diphosphate groups which are linked by this H atom belong to two chains. The two tetrahedra in the diphosphate group are nearly in an eclipsed form, with a P...P distance of 2.964 Å and a P—O—P angle of 135.3°. As indicated by the thermogravimetric analysis, one-half of a water molecule evaporated at ~720 K from two H_{0.5}P₂O₇ diphosphate groups.

Experimental

The hydrothermal reactions were performed in gold ampoules contained in a Leco Tem-Pres autoclave where the pressure

Bal

Gal P1

P2

01

02 03

04

05

06 07

was provided by water. Colorless crystals of $Ba_2GaH(P_2O_7)_2$ were obtained by reacting Ba(OH)₂·8H₂O (0.1830 g, 5.8 \times 10^{-4} mol), Ga₂O₃ (0.0272 g, 1.45 × 10^{-4} mol), 3 *M* H₃PO₄ (0.386 ml, 1.16 × 10^{-3} mol) and water (0.054 ml, 3 × 10^{-3} mol) in a sealed gold ampoule (inner diameter: 0.485 cm) with 65% filling, and heated at 823 K and an estimated pressure of 2200 atm (1 atm = 101 325 Pa) for 8 h. The autoclave was cooled slowly (5 K h^{-1}) to 523 K and then cooled to room temperature by turning off the power to the furnace. The reaction product was obtained as a pure phase of Ba₂GaH(P₂O₇)₂. Thermogravimetric analysis was performed on a powder sample in flowing N₂ with a heating rate of 10 K min^{-1} .

Crystal data

$Ba_2GaH(P_2O_7)_2$	Mo $K\alpha$ radiation
$M_r = 693.29$	$\lambda = 0.71073 \text{ Å}$
Triclinic	Cell parameters from 2755
P1	reflections
a = 4.7830(1) Å	$\theta = 2.57 - 25.00^{\circ}$
b = 7.5624(2) Å	$\mu = 10.128 \text{ mm}^{-1}$
c = 8.5690(2) Å	T = 295 K
$\alpha = 108.231(1)^{\circ}$	Tabular
$\beta = 97.384(1)^{\circ}$	$0.18 \times 0.12 \times 0.12$ mm
$\gamma = 105.236(1)^{\circ}$	Colorless
$V = 276.43 (2) Å^3$	
Z = 1	
$D_x = 4.165 \text{ Mg m}^{-3}$	
D_m not measured	

Data collection

Siemens SMART CCD	1283 reflections with
diffractometer	$F_o^2 > 3\sigma(F_o^2)$
ω scans	$R_{\rm int} = 0.039$
Absorption correction:	$\theta_{\rm max} = 28.71^{\circ}$
empirical (SADABS;	$h = -6 \rightarrow 6$
Sheldrick, 1996)	$k = -10 \rightarrow 10$
$T_{\rm min} = 0.163, \ T_{\rm max} = 0.304$	$l = -11 \rightarrow 11$
2917 measured reflections	
1313 independent reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.047$ S = 1.1401283 reflections 98 parameters H-atom parameters not refined $w = 1/[\sigma^2(F_o^2) + (0.0155P)^2]$ + 0.6777P], where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max}$ = 0.77 e Å⁻³ $\Delta \rho_{\rm min}$ = -1.09 e Å⁻³ Extinction correction: $F_o^* = kF_o[1 + 0.001\chi F_c^2]$ $\times \lambda^3/\sin(2\theta)]^{-1/4}$ Extinction coefficient: $\chi = 0.161$ Scattering factors from SHELXS86 (Sheldrick, 1990)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

x	у	z	U_{eq}
0.14471 (4)	0.47386(2)	0.74143 (2)	0.01141 (11)
0	0	0	0.00717(12)
0.37741 (17)	0.17382(11)	0.37407 (9)	0.0084 (2)
0.45503 (17)	-0.18274 (12)	0.13899 (9)	0.0070(2)
0.1607(5)	0.1548(3)	0.4887(3)	0.0124 (4)
0.6694 (5)	0.3316(4)	0.4667(3)	0.0143 (4)
0.2511 (5)	0.2062(3)	0.2156(3)	0.0108 (4)
0.4215 (6)	-0.0387(3)	0.3121 (3)	0.0129 (4)
0.3449 (5)	-0.3872 (3)	0.1411 (3)	0.0123 (4)
0.2599(5)	-0.1613(3)	-0.0051(3)	0.0100(4)
0.2198(5)	0.1317(4)	-0.1320(3)	0.0115 (4)

Table 2. Selected distances (Å)

Ba1—O5'	2.672 (2)	Gal-O3	1.983 (2)
Ba1—O1	2.718(2)	P1O2	1.500(2)
Bal—O2"	2.738(2)	P101	1.527 (2)
Ba1O2'''	2.761 (2)	P1O3	1.531 (2)
BalO6"	2.789(2)	PI-O4	1.607 (2)
Bal—O5`	2.833 (2)	P205	1.503 (2)
Bal—O3"	3.136(2)	P2—07`"	1.515 (2)
Bal—O5"	3.182(2)	P2—O6	1.526 (2)
Bal—O7	3.185 (2)	P204	1.598 (2)
Ga1—06	1.953 (2)	01—H1	1.260(2)
Ga107	1.959(2)		

Symmetry codes: (i) -x, -y, 1-z; (ii) 1-x, 1-y, 1-z; (iii) x-1, y, z; (iv) x, 1 + y, 1 + z; (v) 1 - x, -y, 1 - z; (vi) x, y, 1 + z; (vii) 1 - x, -y, -z.

The minimum in the difference map is 0.75 Å from Ba1.

Data collection: SMART (Siemens, 1995). Cell refinement: SMART. Data reduction: SAINT (Siemens, 1995). Program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1994). Program(s) used to refine structure: SHELXTL-Plus. Molecular graphics: SHELXTL-Plus. Software used to prepare material for publication: SHELXTL-Plus.

We are grateful to the National Science Council for the support of this study (NSC87-CPC-M007-011).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1242). Services for accessing these data are described at the back of the journal.

References

- Gruntze, I., Maksimova, S. I., Palkina, K. K., Chibiskova, N. T. & Chudinova, N. N. (1988). Izv. Akad. Nauk SSSR Neorg. Mater. 24, 264-267.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1994). SHELXTL-Plus. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. Siemens Area Detector Absorption Correction Software. University of Göttingen, Germany.
- Siemens (1995). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.